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NUMERICAL ANALYSIS OF AXISYMMETRIC BUCKLING OF PLATES

UNDER RADIAL COMPRESSION

UDC 539.370L. I. Shkutin

Nonlinear boundary-value problems of axisymmetric buckling of simply supported and clamped plates
under radial compression are formulated for a system of six first-order ordinary differential equations
with independent fields of finite displacements and rotations. Multivalued solutions are obtained by
the shooting method with specified accuracy. Bifurcation of the solutions of the problem is studied,
and a parametric bifurcation diagram is constructed for various values of the loading parameter.
Curves of buckling modes are given for three branches of the solution. The numerical results agree
with available theoretical data.
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Introduction. The problem of buckling of a circular plate under uniform radial compression is one of the
well-known problems of elasticity theory, which has long attracted the attention of both mechanical engineers and
mathematicians. Like the Euler problem of column buckling, it is a classical problem of bifurcation theory for
solutions of nonlinear boundary-value problems. The studies addressing this problem can be classified into two
groups: analytical methods and theoretical analysis. Bryan [1] and Dinnik [2] obtained exact analytical solutions to
linearized problems of axisymmetric buckling of simply supported and clamped plates, treated as stability problems
of the plane state of a plate. These solutions, expressed in terms of Bessel functions, determine a discrete spectrum
of eigenvalues λn (n ∈ N) for the loading parameter λ. Moreover, Bryan [1] and Nadai [3] obtained a discrete
spectrum of a linearized problem for asymmetric (oscillating along the circumferential coordinate) buckling modes.
The first eigenvalue for these modes was found to be much higher than that for the axisymmetric modes. In view
of this fact, the problem of axisymmetric buckling of a plate is still of interest to researches.

Friedrichs and Stoker [4] were the first to formulate a nonlinear problem of axisymmetric buckling of a plate
under uniform radial compression using the von Kármán fourth-order equations. Using the power series method
they obtained solutions for a simply supported plate that bifurcate from the first eigenvalue λ1 of the linearized
problem. Other boundary-value problems in this formulation were later solved invoking direct methods [5].

Friedrichs and Stoker [6] pioneered the theoretical analysis of nonlinear problems of axisymmetric buckling of
plates under radial compression. It has been shown [6] that for a simply supported plate in the interval λ1 < λ 6 λ2,
only one (mirror-symmetrical) pair of buckling modes exists. Vorovich [7] substantiated the method of linearizing
nonlinear problems of shell buckling and showed that in a plate problem, the parameter λ is a bifurcation point of
the solution if and only if it is equal to the eigenvalue of the linearized problem. It has been shown [8–10] that for
simply supported and clamped plates for all λ > λn, n pairs of axisymmetric buckling modes with n − 1 internal
nodes exist. The main results of [8–10] can be found in [11], and those of [7] are included in [12].

Recently, this class of nonlinear problems has been the subject of extensive theoretical investigations. How-
ever, insufficient attention has been given to numerical solutions of these problems. Nontrivial solutions of large
norm were obtained in [13] by simplifying the mathematical formulation of the problem: the fourth-order boundary-
value problem was reduced to an inadequate boundary-value problem for the Bessel equation for the function sin θ

(θ is the local angle of rotation of the radial element of the plate).
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In the present paper, the nonlinear problem of axisymmetric buckling of a plate under radial compression is
solved in a refined formulation using six first-order nonlinear equations which describe arbitrary angles of rotation
and take into account transverse shear strains.

System of Equations. In cylindrical coordinates (r, ϕ, z), a circular plate is defined by the equation

r = Rt ∀t ∈ [0, 1], ∀ϕ ∈ [0, 2π], ∀z ∈ [−h, h],

where t is an independent variable, R is the radius of the plate, and 2h is the plate thickness. We consider the case
where the middle surface of the deformed plate remains axisymmetric and is described by the parametric equations

r = Ry2(t), z = Ry3(t) ∀t ∈ [0, 1], ∀ϕ ∈ [0, 2π],

where y2 and y3 are the unknown coordinates of a point.
To study the axisymmetric deformation of the plate, we use the equations of the nonlinear shell model with

independent fields of finite displacements and rotations [14]. The plate material is considered transversely isotropic
and linearly elastic. The original system of equations comprises the constitutive relations

U11 = (1− ν2)F−1T11 − νU22, V11 = (1− ν2)H−1M11 − νV22,

U13 = γF−1T13, T22 = νT11 + FU22, M22 = νM11 + HV22,
(1)

the kinematic relations

RV11 = θ′, RV22 = t−1 sin θ, U22 = t−1(y2 − t),

y′2 = (1 + U11) cos θ + U13 sin θ, y′3 = −(1 + U11) sin θ + U13 cos θ,
(2)

and the static equations

(tT1)′ − T22 + RtP1 = 0, (tT3)′ + RtP3 = 0, (tM11)′ −M22 cos θ −RtT13 + RtQ2 = 0,

T11 = T1 cos θ − T3 sin θ, T13 = T1 sin θ + T3 cos θ. (3)

In (1)–(3), F = 2hE, 3H = 2h3E, γ = E/G, E is Young’s modulus, G is the transverse shear modulus, ν is
Poisson’s ratio, θ(t) is the unknown angle of rotation of the local basis about the basis of the cylindrical coordinate
system, UiJ(t), Vii(t), TiJ(t), and Mii(t) are the components of the metric and flexural strains, forces, and moments
in the rotated basis, respectively (i = 1, 2 and J = 1, 2, 3), T1(t), T3(t), P1(t), P3(t), and Q2(t) are the components
of the forces, surface loads, and moments in the basis of the cylindrical coordinate system, respectively, and the
prime denotes differentiation with respect to t.

Rotation independent of displacements produces transverse shear strains whose measure is the metric com-
ponent U13(t) related to the shear force T13(t) by the constitutive relation (1).

Equations (1)–(3) reduce to the system

y′0 = t−1[(1− ν2)y1 − ν sin y0], y′1 = t−1(νy1 + sin y0) cos y0 + ε−1f3 − tq2,

y′2 = εγt−1f3 sin y0 + (1 + εf1) cos y0, y′3 = εγt−1f3 cos y0 − (1 + εf1) sin y0,

y′4 = t−1[νf2 + ε−1(y2 − t)]− tp1, y′5 = −tp3,
(4)

f1 = t−1[(1− ν2)f2 − ε−1ν(y2 − t)], f2 = y4 cos y0 − y5 sin y0, f3 = y4 sin y0 + y5 cos y0

for six unknown functions y0 = θ, y1 = tM11R/H, y2 = r/R, y3 = z/R, y4 = tT1/C, and y5 = tT3/C and the
parameters ε2 = h2/(3R2), pJ = PJR/C, q2 = Q2R

2/H, and C = εF .
System (4) describes the nonlinear bending of a circular plate for specified values of the loading parameters

p1, p3, and q2 and the stiffness parameters ε, γ, and ν and for specified boundary conditions. This system is singular
for the variable t at the point t = 0. For γ = 0, system (4) formulates the problem of strong bending of the plate
without transverse shear strains (the Kirchhoff model for large rotations).

For system (4), we formulate two boundary-value problems of axisymmetric deformation of a circular plate
under uniform radial compressive loading of intensity P . Since a surface load is absent, one should set q2 = p3

= p1 = 0 in system (4). At the pole t = 0, the symmetry and regularity conditions y0(0) = 0, y2(0) = 0, and
[t−1y5(t)]t→0 → 0 should hold. In the numerical analysis, however, these conditions do not hold because of the
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presence of polar singularities in system (4). Therefore, these conditions are replaced by the following asymptotically
exact conditions at a point t = δ close to the pole:

(ν − 1)y1 + sin y0 = 0, (ν − 1)(y4 cos y0 − y5 sin y0) + ε−1(y2 − δ) = 0, y5 = 0. (5)

By virtue of conditions (5), the equalities T22 = T11, M22 = M11, and T3 = 0, which should hold at the pole, are
satisfied at this point.

At the boundary point t = 1, the following conditions are specified: y1(1) = 0, y3(1) = 0, and y4(1) = −p

for a movable, simply supported contour (problem A) or y0(1) = 0, y3(1) = 0, y4(1) = −p (p = P/C) for a movable,
clamped contour (problem B). From Eqs. (4) and the boundary conditions follows the obvious result y5(t) ≡ 0
(T3 ≡ 0), which was not used in the numerical algorithm but was invoked to control the stability of the solution
against small perturbations of the boundary parameters.

The nonlinear problems A and B were solved by the shooting method from the point t = 1 to the point
t = δ. The boundary conditions (5) form a system of implicit equations for additional initial parameters of the
shooting method. Bifurcation of the solutions of the boundary-value problems was determined by varying the
loading parameter. Numerical implementation of the algorithm was performed with the Mathcad software package.

Numerical Results. The solutions of the boundary-value problems A and B for an isotropic plate with
parameters ν = 0.25, γ = 2.5, and ε = 0.025 are presented in tables and figures. We introduce the following notation:
λ = P/P1a is the normalized loading parameter, P1a = Cp1a is the first bifurcation value of the compressive force
in the simply supported case, θ(1) is the boundary value of the angle of rotation, u = 1 − y2(1) = 1 − r(1)/R

and w = |y3(δ)| = |z(δ)|/R are the parameters of the radial and axial displacements of the boundary points,
respectively, τi = Tii/C and µi = MiiR/H are the parameters of the internal forces and moments, respectively, and
µ(δ) = µ1(δ) = µ2(δ).

The following three bifurcation (critical) values of the parameter p were obtained (for δ = 0.05): p1a ' 0.1085,
p2a ' 0.7719, and p3a ' 1.958 (problem A) and p1b ' 0.3915, p2b ' 1.313, and p3b ' 2.763 (problem B). The
corresponding values of the parameter λ are λ1a = 1, λ2a ' 7.114, λ3a ' 18.05, λ1b ' 3.609, λ2b ' 12.101, and
λ3b ' 25.47.

Figure 1 shows the parameter w proportional to the deflection at the point t = δ as a function of the
parameter λ = p/p1a for the first three buckling modes of the plate: curves 1a, 2a, and 3a are the branches of
the solution of problem A, and curves 1b, 2b, and 3b are the branches of the solution of problem B. Since in the
unbuckled (plane) states, which w ≡ 0, these states correspond to points on the abscissa, including bifurcation
points.

The problem considered admits pairwise solutions which are symmetric about the plate plane. Therefore,
Fig. 1 can be complemented by reflection with respect to the abscissa if the parameter w is defined by w = z(δ)/R.

For problem A, the values of the state parameters at some points of the plate are listed in Tables 1, 2,
and 3 (branches 1a, 2a, and 3a, respectively). The point numbers are given in the first columns. The first
parameter θ(1) was specified in the calculations and the other parameters were calculated by the shooting method.
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TABLE 1

Point
number

θ(1) λ 10u w τ1(1) τ2(1) µ(δ)

0 0 1 0.0203 0 −0.1085 −0.1085 0
1 0.01 1.002 0.0206 0.0068 −0.1087 −0.1095 0.0233
2 0.05 1.042 0.0260 0.0336 −0.1130 −0.1323 0.1141
3 0.10 1.162 0.0424 0.0658 −0.1255 −0.2010 0.2157
4 0.20 1.554 0.1011 0.1228 −0.1653 −0.4458 0.3622
5 0.30 2.050 0.1856 0.1704 −0.2125 −0.7954 0.4444

TABLE 2

Point
number

θ(1) λ 10u w τ1(1) τ2(1) µ(δ)

0 0 7.114 0.1447 0 −0.7719 −0.7719 0
1 0.03 7.216 0.1491 −0.0173 −0.7826 −0.7922 −0.3031
2 0.05 7.397 0.1570 −0.0291 −0.8016 −0.8285 −0.4980
3 0.10 8.252 0.1949 −0.0607 −0.8909 −1.0022 −0.9298
4 0.20 11.448 0.3482 −0.1300 −1.2174 −1.6973 −1.4312
5 0.25 13.505 0.4578 −0.1636 −1.4197 −2.1862 −1.5216

TABLE 3

Point
number

θ(1) λ 10u w τ1(1) τ2(1) µ(δ)

0 0 18.046 0.3672 0 −1.9580 −1.9580 0
1 0.03 18.201 0.3729 0.0130 −1.9740 −1.9850 0.5939
2 0.05 18.477 0.3832 0.0219 −2.0023 −2.0333 0.9778
3 0.10 19.791 0.4324 0.0459 −2.1365 −2.2639 1.8420
4 0.20 25.039 0.6375 0.1030 −2.6626 −3.2157 2.8734
5 0.30 32.707 0.9697 0.1635 −3.3902 −4.7262 3.9066

The corresponding data for problem B (branches 1b, 2b, and 3b) are listed in Tables 4, 5,and 6, respectively [in the
calculations, the parameter µ(1) proportional to the bending moment at the boundary point was specified]. The
first rows of the tables correspond to the bifurcation points lying on the abscissa axis (Fig. 1).

Figures 2–4 show the buckling modes of the plate meridian that refer to various points of branches 1, 2,
and 3, respectively. Modes 2, 3, and 4 in Fig. 2a refer to the points of the first branch from Table 1 and modes 1, 2,
and 5 in Fig. 2b refer to the points of the first branch from Table 4. Figure 3a and b and Fig. 4a and b show higher
modes for the points of Tables 2, 5 and 3, 6, respectively. One can see that in both problems, the first modes have
no internal nodes, the second modes have one node, and the third modes have two nodes. The radial displacement
of the boundary point of the meridian is more pronounced in Fig. 4 since this displacement of the third modes is
much larger than that of the lower modes.

The data given in the tables give an insight into the evolution of the force parameters of the plate. The
maximum absolute values of the force parameters occur on the boundary contour, and the parameter τ2 increases
faster than τ1 as λ increases. The maximum bending moments occur at the center of the plate (see the last columns
of the tables). The radial and circumferential forces are compressive, nearly constant, and equal in the neighborhood
of the critical points. With distance from the critical points, the difference between the magnitudes of these forces
increases. The compressive forces increase near the plate edge and decrease (to zero) as the pole is approached;
with further increase in the load, an extension zone forms near the pole. The monotonic variation in the forces
and moments along the coordinate inherent to the first branch of solutions is violated for high values of the loading
parameter. As the load increases, the oscillations of the forces and moments are enhanced and nonlinearity shows
up for increasingly smaller deviations from the plane state of equilibrium.

Conclusions. The results of the numerical analysis of the nonlinear problem considered agree with theoret-
ical findings [8–11]. The critical values of the compressive force obtained in the exact nonlinear formulation for an
isotropic plate are very close (with accuracy up to three digits) to the eigenvalues of the linearized problem [2, 5].
The global solutions of the nonlinear problem are obtained by the shooting method with specified accuracy (see
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TABLE 4

Point
number

µ1(1) λ 10u w τ1(1) τ2(1) µ(δ)

0 0 3.609 0.0734 0 −0.3915 −0.3915 0
1 −0.3 4.017 0.0945 0.0640 −0.4358 −0.4869 0.4176
2 −0.5 4.576 0.1249 0.0996 −0.4965 −0.6238 0.6104
3 −0.7 5.213 0.1615 0.1297 −0.5656 −0.7874 0.7417
4 −0.9 5.867 0.2013 0.1554 −0.6366 −0.9644 0.8306
5 −1.0 6.193 0.2219 0.1670 −0.6719 −1.0557 0.8640

TABLE 5

Point
number

µ1(1) λ 10u w τ1(1) τ2(1) µ(δ)

0 0 12,101 0,2462 0 −1.3130 −1.3130 0
1 −0.3 12.334 0.2553 −0.0136 −1.3382 −1.3559 −0.5914
2 −0.7 13.287 0.2932 −0.0329 −1.4417 −1.5332 −1.2573
3 −1.0 14.352 0.3362 −0.0481 −1.5572 −1.7341 −1.6213
4 −1.5 16.478 0.4251 −0.0736 −1.7879 −2.1474 −1.9948
5 −2.5 21.068 0.6330 −0.1190 −2.2859 −3.1035 −2.2428
6 −3.5 25.524 0.8569 −0.1554 −2.7693 −4.1198 −2.2419

TABLE 6

Point
number

µ1(1) λ 10u w τ1(1) τ2(1) µ(δ)

0 0 25.468 0.5181 0 −2.7633 −2.7633 0
1 −0.5 25.889 0.5332 0.0240 −2.8089 −2.8349 1.1428
2 −1.0 27.094 0.5765 0.0481 −2.9397 −3.0408 2.1420
3 −2.0 31.215 0.7273 0.0954 −3.3868 −3.7557 3.4299
4 −3.0 36.432 0.9274 0.1386 −3.9529 −4.6979 3.9113
5 −3.5 39.156 1.0369 0.1582 −4.2484 −5.2099 3.9788

Figs. 2–4). The parametric bifurcation conditions are represented by a planar projection (see Fig. 1). Evaluation of
the potential-energy levels of the equilibrium states of the plate for a fixed loading parameter shows that the first
buckling modes have the lowest level and plane states have the maximum level.

The equations derived in the paper can be used to formulate and solve strongly nonlinear axisymmetric
problems for isotropic and transversely isotropic plates under different loads and boundary conditions.
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